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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

Lagrange interpolation is one of the oldest methods for approximating an
arbitrary function in era, b], the space of continuous functions on the closed
interval [a, b] normed with the familiar sup-norm, by means of an element of
ITn [a, b], the subspace consisting of polynomials of degree n or less. One
chooses n + 1 points, called nodes, to, t1 , ... , t", with a :s:;; to < t1 < ... <
tn :s:;; b. Then the ith Lagrange polynomial of degree n is defined as

n t - t.
Yi(t) = n__J

j~O t i - tj
j¥-i

(0 ~ i ,;:;: n).

It is easily seen that Y;(t j ) = 0 for i 0;1= j, and y/(ti) = 1; also that Yo ,... , Yn
form a basis for IT" [a, b], and that I:~~o Yi = 1. The Lagrange interpolating
projection is the operator L: C[a, b] ->- ITn[a, b], given by Lf c= I:~~Of(ti) Yi .
The equality II L II = II I:~~o IYi III is easily established. The expression
I:~~o ;Yi I is called the Lebesgue function of L and will be denoted by A. For
n ~ 2, A(t) ~ 1, and A(t) = I only when t is a node. Between ti- 1 and ti ,
for I < i :s:;; n, A is a polynomial, whose analytic continuation we denote by
Xi' and A (or now Xi) has a unique local maximum Ti E (ti-1 , ti), at which
xXTJ = O. Thus we may specifically write Xi =c L:~o Yi sgn Yi(Ti)' It is also
convenient to denote the value X i ( T/) of the local maximum by a single
symbol Ai'

Since the efficiency of approximation by any linear projection P onto a
subspace Y of C[a, b] is governed by the inequality

ilf - Pf! < (l -+- P il) d(j, Y),

it is desirable to minimize II L , which, in the case of Lagrange interpolation,
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depends exclusively upon strategic placement of the nodes. Now, let [a, bJ
and [c, d] be any two intervals. The affine transformation of [a, b] to [c. d]
induces an isometry between C[a, b] and C[c, d] which carries IIn [a, b] to
IIn[c, d]. If P: C [a, b] ~+IIn [a, b], we may thus obtain a projection P' :
C[c, d] ---+ IIn[c, d] with 'i P'! I P II, taking c and d to be the extremities
of the carrier of P. Therefore without loss of generality we restrict our
attention to those nodal configurations where a tu and b = til . (Alter
natively, we may fix any two of tu , ... , tn while varying some or all of the
others, in order to observe the resulting behavior of AI"'" An [7, 14,27].)

Another simple fact is that if any two nodes are moved toward one another,
we have Ii L! ---+ 00, and, when, for some i E {I, ... , n - 1} all nodes save t i are
fixed, Ai is a strictly increasing function of t i , and Ai+! is strictly decreasing.
In all likelihood, these facts were the ones which in 1931 led Bernstein [5] to
conjecture (assuming a < tu and tn < b) as follows:

II parait probable que les plus grand des n + 2 maxima de F(x) [here, A(t)I,
correspondant a tous ces intervalles sera minime, lorsque tous les maxima seront
egaux. Mais je n'ai pu prouver cette affirmation que sous la condition que n
croit indefiniment, et ce n'est que ce dernier cas que naus examinerons ac
tuellement.

We present here three results which among other things completely settle
the conjecture of Bernstein.

THEOREM I. In order that the Lagrange interpolation from C[a, b] ---+

IIn[a, b] on a tu < t1 < ... < tn = b have minimal norm among all inter-
polating projections onto TIn [a, b], it is necessary that Al = A2 = ... = An .

We denote by Cn the norm of any interpolating projection from C[a, b]
onto IIn[a, b] which has minimal norm. In accordance with standard usage,
C n is called the projection constant for Lagrange interpolation ofdegree n. We
then have

THEOREM 2. If Al = ... =~ An~1 = c, for some constant c, then c > C n- 1 •

In particular, Cn is a strictly increasing function ofn.

THEOREM 3. There is a unique configuration ofnodes a = to < t1 < ... <
tn = b, such that Lagrange interpolation on those points yields Al = A2 =c

An .

2. PROOFS OF THE THEOREMS

We begin by noting that the function (tu ,... , tn ) ---+ (AI"'" An) is differen
tiable, and that the derivative is given by the Jacobian (8A;/8t;).
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The rank of this matrix is not more than n - 1, since the space IIn is closed
under affine transformations of t, as previously mentioned. For the same
reason, any system of n - 1 rows is equivalent to any other. Thus, in what
follows, we fix the nodes to and tn . If, however, it facilitates comprehension
or avoids unpleasant calculations, we fix any convenient pair of nodes for
purposes of discussion.

In investigating the rank of the Jacobian matrix, we may employ certain
simplifications, the first of which is the formula

(0 ~ j ,,;; n, 1 ~ i ~ n).

The elegance and symmetry of this expression are enhanced by the fact that
Ti may be treated in the formula as a fixed point rather than as a variable.
The second simplification, communicated to me orally by Dr. Dietrich Braess,
is to cancel the denominator I1~,.j k+O (tj - tk ) of Yj from each entry in the
jth row of our matrix. Then we may divide each entry in the ith column by the
nonzero expression I1~~0 (T i -- tk), resulting at last in the matrix

X{(to) X~(to)---
tn - T I to - Tn
X{(tI) X~(tI)

---

A
t1 - Tl tI - Tn

X{(tn) X~(tn)
---

tn - TI tn - Tn

When the matrix has been reduced to this new form, we may define poly
nomials qI ,... , qn by qi(t) = XXt)/t- Ti , since Ti is a root of X; .

This matrix, originating from a nodal configuration to ,... , tn , may now be
considered as a matrix in which given polynomials qI ,... , qn are evaluated at
points to ,... , tn' In other words, we may, in this new formulation of the
problem, free the points to ,... , tn from their original role as nodes. We note
that the degree of qi , for I ~ i ~ n, does not exceed n - 2.

Proof of Theorem I. By lemmas I through 8 to follow, any n - 1 of
qI , ... , qn form a basis for IIn - 2 , given an arbitrary configuration of the nodes.
Hence, any (n - I) x (n - 1) square submatrix of A is nonsingular. From
this it follows that, given any initial nodal configuration, we can produce a
perturbation of some or all of any list of n - I nodes (leaving any pair of
nodes fixed), which causes the decrease of any desired n -- I of AI'"'' An .

Thus we may set to = a and tn = b, and vary tI ,... , tn- I from any initial
configuration, decreasing maxI<i<n Ai until a situation is reached where
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1\== 1\2 ... = A". Therefore, if maxiC"" Ai = /1! IS minimized, it is
necessary that Al .••~ 1\2 An' I

Proof of Theorem 2. Assume an initial configuration (t~ ,... , I,:-Jl; of the
nodes in which I~ =-= --I and I~_] I. Viewing 10 and In - 1 as the fixed pair of
nodes, denote Ai(l~ ,... , 1~-2 , I~) by Ai for lin. Then, since 10 < T] <
11 < T 2 < 12 < ... < In- 1 < Tn < In always, we may apply Lemma 9 to
show that the matrix

CAl CAn_2

all all

B=

CAn_2

81n _ 2

is globally nonsingular. Thus, we may by the Implicit Function Theorem
define (t1 ,... , I n - 2) as an implicit function ljJ of In , with the given initial point
and in accordance with the relation

and I claim that the domain of ljJ contains [t~ , XJ).

Knowing by the Implicit Function Theorem that ljJ is defined on an open
neighborhood of I~, assume that it is defined on the interval [I~, I~). It
suffices for our proof to show that if; may be continued to I:: .

We first wish to show that I Ii -- li_] I is bounded from 0 for 1 i ~ n. If
I Ii - Ii-I: -->- 0 for some i as If! ----+ I:; . then i must be less than n, and A; ----+ XJ

for every j for which I Ii - 1;-1 -f>- O. But then, since A] ,... , An -2 remain
constant, Ij ->- --I for I ~ j n 2, and therefore A/I_ I ----+ XJ and An ----+ UJ .

Thus dA'l-l/dln :> 0 and dAn__1/dl n 0 for all In E (I~ , I~), or else dA,-/dln ~= 0
for iI, 2, ... , n - 2, and n -- I or n at some point in (/~ , I~), implying that
at that point an n - 1 x n -- 1 submatrix of A is singular, a contradiction.
But, by Lemma 10, we see that, when 11 , ... , In- 2 , and In are varied in such a
manner that AI'"'' An- 2 remain constant, dA n_1/dl n and dAn/dIn must disagree
in sign, a contradiction.

Thus, there is an E :> 0 such that Ij - - Ii [ E for all i, j distinct as
In ----+ I:; , implying that on the compact set

{(to , ... , In): I Ii - Ii i I 'll
n!

the determinant of B is bounded from 0, and thus all the derivatives dl,-/dln
are bounded. Thus liml ~t " Ii = I~ exists, and, by continuity, the condition
Ai .== A" 1 ~ i ~ n- 2,n h;lds at the point (t;, ... , I;;). Therefore if; may be
continued to, and hence beyond, I~ .
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Now, as tn -+ 00, we note that y~ -+ 0 and y" -+ 0 uniformly on [to, t"-l]'
Moreover, for t E [to, t"-l]' and for k < n, with to = ~ 1 and t"-l = I we
have

1 I, I 1 - tIl I ~ I' I t - tIl I / I' I-I - tIl I 1= 1m ~ 1m "'~ 1m --- ccc
1/-'''2 -I - tIl 1/-+ X tk - tn 'I/-+YC I - tn .

Restricting our attention to the interval [-1, 1], we see that the interpolation
on [to, til] degenerates in uniform and smooth fashion as tIl -+ 00 to an inter
polation on the points to ,... , t"_l into the space II"_l , of degree one less than
the original space, the points t1 ,.,., t"-2 being defined as the appropriate
limits via the function if. That these limits actually exist is a consequence of
the above limit computations, which imply that for °< i < n - 1, Yi and
its partial derivatives and y~ all converge to the expected limits, while y" and
all its derivatives simply vanish. This matter will receive more detailed
scrutiny below.

As tIl -+ 00, A; = Ai for 1 < i < n ~ 2, and A"_l decreases strictly mono
tonically, since An must increase. Therefore the initial value of maX1<;;i<;;n A; is
not less than the limiting value of maxhi<;;"_l Ai as tn -+ 00. Since this is true
for arbitrary initial nodes, it is in particular true for any initial configuration
of nodes yielding Al = A2 = .,. = An- 1 = C, where c is some constant. In the
limit, we obtain Al = Az = .,. = A"-2 = c, while An- 1 < c. Therefore, by
Theorem I, the resulting limit cannot yield max1<;;i<;;"_1 Ai == Cn- 1 , whence
C> Cn - 1 . In particular, Cn - 1 < Cn for n ;? 3. It is well known that C1 = 1
and Cz=~.

Up to the matter of explaining in detail what happens as tn -+ 00, we have
completed the proof of Theorem 2. In order to see that (t1 " •• , t"_2) indeed
approaches a limit as t n -+ 00, let us consider replacing tn by () = l/tn • We
may define Y6 n

-
1l ,... , Y~"-11) to be the polynomials of degree n - 1 which inter

polate on the points -I = to, t1 , .•• , tn- 1 ~= I, Then for t E IR we may define

Z;(t) = [y;n-l)(t)](()t - l)/(()ti - 1)

z,,(t) = ()" TI [/~ ~~. ].
J=O ]

for °< i ~ 1/ - I, and

[t is easily seen that, for °< () < I, the polynomials Zi agree with the poly
nomials of interpolation on the points to ,... , t"-l , and tn, where tn = l/(),
and 1 = t"_1 < t". If on the other hand -1 < e< 0, the polynomials Zi

agree with the polynomials of interpolation on to "'" tn-I, and tn, where
tn ~ I/e as before, but tIl < to = -1. If () = 0, then Z; = yjn- 1l for 0< i ~
n -I, whereas Zn = 0. Moreover, 2 0 "", Zn are clearly continuous in (t,
to ,... , til-I, e), so long as -I < () < 1 and -I = to < t1 < ... < tl/-1 = I;
indeed they are analytic, implying that T1 , .. " T 1/-1 and AI,"" An- 1 are analytic
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on the same domain, while Tn and An are defined and analytic for ° B J,
escaping definition when B 0.

Now, when B = 0, the matrix B is nonsingular by Lemma 8, and
nonsingular at all other values of Bby Lemma 9. Moreover, the matrix

8/\n-l

h]

A' ~=
OA}

Oln-2
8/\1

-W

OAn _ 1

81n _ 2

8/\n-l
------ae

which contains B as a submatrix, is defined and continuous at all values of
II , ... , In-I, and B. It is of course nonsingular only when B "# 0.

Therefore, to the function !f(tn) defined above there corresponds naturally
a function f(B), governed by the same conditions on AI"'" An - 2 and agreeing
in its outputs when In = liB 0. If f has been defined by means of an initial
point B' > 0, then its domain clearly includes (0, B']. Since the matrix A' is
defined and continuous at all values of () (in particular when () = 0), and
since the matrix B, a submatrix of A' and hence continuous at 0, is globally
nonsingular, we may repeat the arguments used above to demonstrate that,
for I ~ i ~ n - I, i Ii - 1;-1 i -f+ 0 as B- 0, justifying the assertion that
I] , ... , (n-2 converge to well-defined limits as In - w. I

Proof of Theorem 3. Let n 3. For an inductive proof, assume that
whenever interpolation into nn_1 is carried out on nodes 10 , ...• (11-1 with
10 =c -I and (,,-I = I, the map (tl , ... , In- 2) f--+ (AI"'" A,,_2) is a global
homeomorphism, and that for each choice of c fCC (C"-2 , w) there exist
unique nodes (tl ,... , In- 2) yielding Al =~ ... = An- 2 = c, and that if c
Cn - I, then An - 1 < Cn _ l . One sees easily that, when n =c 3, these condi
tions hold trivially, and that for any n these inductive hypotheses imply the
uniqueness of nodes yielding Al A"_1 for interpolation into 11" _] .

Our proof is completed by a further investigation into the properties of
the function f defined in the proof of Theorem 2. We have shown there that
the nodes 11"'" 1"-2 converge to well-defined limits as B-;> w. The function
f has been implicitly defined by an initial B', an intitial set of nodes (~ ,... , 1~-2 .

and initial values A~ ,... , A~'_2 . By our inductive hypothesis, and by continuity,
the nodes approached as B- 0 must be those unique nodes which yield
Al = A~ , ... , A"_2 = /\~-2 when B = O. These observations imply that, given
()' fCC (0, I), the function f induced by Ai = A; for I ~ i ~ n - 2 with initial
point (t~ ,... , 1~-2 , 8') contains [0, B'] in its domain. We have further shown
that all such functions which may exist have the same value at B 0. This
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however makes it impossible for more than one such function to exist, since
the matrix B is nonsingular when B = 0, implying that a function B f-+ (t1 ,"0'
tn- z) may be defined by initial values of (t1 , ... , tn- z) occurring when B = 0,
uniquely determined by (AI'"'' An- z), according to our inductive hypothesis.

We note moreover that, since I ti - ti - 1 I -f+ ° for I ~:;; i ~ n - I as
B-)- 0, it is necessary that An -)- 00 as B-)- 0. Thus, since for B > °we can
write tn = I/B, we must have dAn/dB < 0, else dA;jdB = (dJ\;/dtn)(dtn/dB) = 0,
for some B > 0, for i = 1,2,... , n - 2, and n, a contradiction. By Lemma 10,
dAn_1/dB > 0, and we find on increasing B from °that (t1 , ... , tn- z) must
follow a now unique path, and only at B' does An - 1 recover its initial value of
An-I' There is thus a bijection, clearly continuous, between AI, ... , An- 1 and
t1 , ... , tn- z , tn, provided that tu and tn- 1 are fixed. As remarked previously,
fixing to and tn- 1 is equivalent to fixing to and tn' Thus a global homeo
morphism (a diffeomorphism, in fact) exists between (t1 , ... , tn-I) and (AI ,... ,
An-I), enabling us to carry forward the first part of the induction.

Now, let c > Cn - 1 • By Theorem 2, c > Cn - 2 also. We note again that, for
B = 0, there is a unique initial point for the function /J determined by
Al = .. 0 = An - z = c. As B increases, we recall that An - 1 increases also, until
a point, unique on the graph of ;p, is reached at which Al = .. , = An - z =
An _ 1 = c. That this point is globally unique follows from the established
correspondences (t1 , , tn-I) ~~ (t1 , ... , tn- 2 , B) (--t (AI"'" An-I), and, under
the conditions Al = = An - 1 = c, the correspondence c ~ (t1 , ... , tn - z , B),
thus established is differentiable, whence also dAn/de can be computed and
shown by Lemma 10 to be negative, implying in combination with Theorem I
that Al = . o. = An = c occurs uniquely and only when c = Cn . The second
and third parts of the inductive step have been completed, and with them
the proof of the theorem. I

3. LEMMAS ON THE LEBESGUE FUNCTION AND RELATED FUNCTIONS

In a series of lemmas, we establish the necessary properties of Xl'"'' Xn ,

X; ,..., X~ , and qI ,... , qn already referred to, which are used in the proofs of
Theorems I, 2, and 3. One assumption often used in the proofs without
explicit statement is that Xl'"'' Xn , X; ,..., X~, and their roots are all
analytic functions of the nodal configuration to, t1 , ... , tn, on the domain
to < tl < ... < tn • It is assumed that n ;? 2 throughout.

LEMMA 1. The polynomials Xl'"'' Xn each have at least n - I simple
roots on [a, b], as do X; and X~ . For each i, 2 ~ i ~ n - I, X; has at least
n - 2 roots on [a, b]. Each root of X; , 1 ~ i ~ n, is a local extremum
of Xi'
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Proof This proof is a tedious but straightforward counting argument,
based on the fact that

X;(t j ) = (-I)ii

X;(t j ) =cc (-I )H-1

ifj i, for 1

if) < i.

nand 0 } II, and

LEMMA 2. There is no common root for XL1 and X;, 2 ~ i ~n, nor is there
a common root for X; and X~ .

Proof We use the easily established identities

X i - 1 Xi = 2Y;_1

.X; +- X n = 2yo + 2Yn

Xl - X n = 2yo - 2Yn

for 2 ~ i ~ n, and

if n is odd,

if n is even.

Assume that 2 < i < n and that there is r E ~, Xl-1(r) = X;(r) = O. Then
also Y;-ir) = O. Since by Lemma 1 t;_l cannot be a local extremum for
X;-l nor for X; , r c/c t;_l' For} cJ= i-I, 0 <} ~ n, y;(tj) = O. Therefore
y;(tj) cJ= O. It follows that r is not a node, and that YH(r) cJ= O. From Lemma 1
it also follows that X;_l(r) cJ= 0, since all roots of X;-l are simple.

Now since X;_l(r) = Y;-l(r) = 0, it follows that, for any 0: E ~, XL1(r) -1
O:Y;_l(r) = O. Moreover, since for } cJ= i-I, 0 <} < n, YH(tj) = 0, we
have X;-l(t;) + O:YH(t;) = Xi_it;) when j cJ= i-I. Thus for any 0: E ~,

X;-l + O:Y;_l must have at least n - 1 distinct simple roots. However, since
Xi- 1(r) cJ= 0 cJ= Y;-l(r), there is 0: E ~ such that 0: cJ= 0 and X;_l(r) + O:YH(r) =
0, with the root at r having multiplicity at least two, whence Xi- 1 + O:Yi+1 has
at least n + 1 roots. From this contradiction it follows that XLI and X; have
no common root for 2 < i n.

For the case of X~ and X~ , we adopt the definition

Pn=Yo-Yn,

= Yo + Y",

n even

n odd,

noting that P,,(t;) = 0 and Pn(tJ cJ= 0 for 1 <} < n - 1, and any other
hypothetical root r of Pn must be simple, whence P~(r) oj:- O.

Now assume that X~(r) = X~(r) = O. We have seen that Pn(r) cJ= O. Also,
X~(to) cJ= 0 cJ= X~(tn), whence r is not a node, nor is X1(r) = 0, by Lemma 1.
Thus there is 0: E ~, 0: cJ= 0, such that X1(r) + o:PnCr) = 0, since Xl + (_1)n+1
X n = 2Pn . The expression Xl + o:Pn takes on the value (_1)i+1 at t; , for
1 ~) ~ n - 1. At to the value is 1 + 0:, and at tn the value is (1 + 0:)

(_1)n+1. If 1 + 0: = 0, then Xl + o:Pn vanishes at to and tn , having thus 11

roots, with the root at r of multiplicity more than one, implying at least n + 1
roots. If 1 + 0: > 0, then there is a change of sign between tn- 1 and tn' If
1 + 0: < 0, then there is a change of sign between to and t1 • In either case,
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the expression has n - 1 roots at which it changes sign. Since the root at r
has multiplicity at least two (or three, if the sign changes at r), we again end
with at least n + 1 roots. Thus X~ and X~ have no common root. I

LEMMA 3. All roots of X{ and X~ lie on the interval [T1 , Tn].

Proof Consider X~ . By the proof of Lemma 1, it is clear that all roots of
X~ lie on (to , Tn]' Since Xl + (-1 )nH X n = 2Pn, we let tn -->- CIJ while
fixing to ,... , tn-I' This causes P~ to converge to y~ uniformly on any compact
set. Let tn be chosen sufficiently large that P~ < 0 on [to, t1]. Now if to <
t < T1 , we have X~(t) > 0, and thus (_l)n+! X~(t) < O. By symmetry, the
lemma also holds for X{. I

LEMMA 4. The roots ofX{ and X~ interlace as we pass from T1 to Tn.

Proof By Lemma 3, all roots of X{ and X~ occur on [T1' Tn]' By
Lc..nmas I and 2, X{ and X~ each have their full complement of n - 1 roots
on h , Tn], and no two of these roots coincide. If 1 ~ i ~ n - 2, X~ has a
root on the interval (t;-l , ti+1) which is a local extremum, since

and this root is a continuous function of the nodes. Starting at the left of the
interval, t 1 may be moved to coincide with the leftmost root of X~ . Then by
the identity

X{ + (_I)n+l X~ = 2P~,

X{ is not zero, and by continuity the sign of X{ at the leftmost root of X~ is
invariant over all nodal configurations. Moving to the interval (t1 , ta), we
may so position t2 as to coincide with the second root of X~ from the left.
Again X{ =F 0, and its sign has alternated. Continuing this procedure until
we reach (tn-a, tn-I), we then note that, since X1(tn-2) = -X1(tn-1) =

X1(tn), there must occur a root of Xl on the interval (tn-2 , tn). By Lemma 3,
this root must lie to the left of Tn' I

LEMMA 5. Between T1 and the leftmost root of XLI on [T1' Tn], there is a
root ofX~ . The symmetric statement about X{ also holds.

Proof We use the formula X n- 1 + X n 0= 2Yn-1 to show the first
statement. Assuming that n is odd, we have Xn(to) = -Xn(t1) = Xn(t2) = 1,
and X n- 1(to) = - X n- 1(t1) = X n_it2) = - 1. There is thus a unique mini
mum of X n on (to, t2). The node t1 may be moved to coincide with the left
most root of X n- 1 in h, Tn]. Then X~(t1) = 2Y~-1(t1) > 0, and the mini
mum of X n must lie to the left of t1 • That point is also a root of X~ and by
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Lemma 3 must lie to the right of Tl . In case that n is even, the argument is
similar. I

LEMMA 6. For all j and j in the range {I, 2, ... , n}, X;(TJ = 0 if and only if
i = j. Moreover, if j ~ n - 1, the polynomial X; has exactly one simple root
on the interval [Tj , Tj+1]'

Proof. If n = 2, then Tl < T 2 , while Xl and X 2 are linear. Assume
inductively that the pattern of roots has been established for all nodal con
figurations for all values of n ~ N, and consider any configuration of nodes,
to < t1 < ... < tN < tN+l . Let tN+l ---+ 00. Then on [to, tN] the polynomials
X~ ,... , X;", and their respective roots approach uniformly the functions
derived from interpolation on t l , .•• , tN . Thus by the inductive hypothesis
the roots of X~ ,..., X;", which lie on h , TN] lie in the desired pattern. Simi
larly, by allowing to ---+ - 00 while t1 , ••. , tN +1 are fixed, the roots of X~ ,... ,
X;"'+l lying on [T2 , TN+l] also obey the pattern. Lemmas 3,4, and 5 complete
the inductive step. I .

Corollary to Lemma 6. The roots of ql ,... , qn lie in the same locations as
those ofX~ ,... , X~ ,save that T1 ,... , Tn are no longer present as roots.

At this point, we adopt a convention. While we now know enough about
ql ,... , qn actually to compute sgn qi(Tj) for all i,j, 1 ~ i,j ~ n, it greatly
simplifies and clarifies matters, to change the signs of ql ... qn in Lemmas 7,
8, and 9 so that qih) > 0, for 1 ~ i ~ n. This is possible since qih) 01= O.

LEMMA 7. Adopting the above convention, we have, for 2 ~ i,j ~ n,
sgn qi(Ti) = sgn ql(Ti), while sgn qj(Ti) = -sgn ql(Ti) for j 01= i.

Proof. At Tl' sgn qi(Tl) = sgn ql(Tl) = 1 for 2 ~ i ~ n. On the interval
[Ti-l, Ti], each of ql ,... , qn has exactly one root, save that qi-l and qi have
no roots on the interval. I

LEMMA 8. Let 1 ~ k ~ n. Then {ql ,... , qn} '"'-' {qk} is a basis for IIn- 2 .

Proof (by contradiction). Assume that there exist (Xl , ••• , (Xn with (Xk = 0,
such that not all of (Xl , ... , (Xn are zero, and Q = (Xlql + ... + (Xnqn = O. No
generality is lost by assuming that (Xl ? O. Also, the case that k = 1 is
symmetric to the case that k = n. Therefore, we assume that k 01= 1. We
define two subsets JV and g; of {2, ... , n}:

JV = {j I 2 ~j ~ nand (Xj < O},

g; = {j I 2 ~j ~ nand (Xj > O}.

It is evident that, if not all of (Xl , ... , (Xn are zero, and if (Xl ? 0, then JV is
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nonempty, for Q(7"l) = (Ci.lql + ... + Ci.nqn)(7"l) = 0 and q,;{7"i) > 0 for all
i, 1 ~ i ~ n, by the convention previously assumed. Therefore some of
(Xl"'" Ci.n must be positive and some must be negative.

To see that fJj'J is nonempty, we consider the point 7"k . By Lemma 7, we
have sgn ql7"k) = -sgn ql(7"k) for j #- 1, k. If fJj'J is void, this implies Ci. l ~ 0
and Ci.j ~ 0 for all j ~ 2, with Ci.j < 0 for at least one j ~ 2, implying that
Q(7"k) > O. However, we have assumed that Q(t) = 0 for all t. Thus fJj'J is
nonempty.

We now set N = Ci.lql + LjEA" Ci.jqj and P = LjE2/' Ci.jaj, yielding Q =
N -+- P. Investigating sgn N(7,) for 2 ~ i ~ n, we see that sgn Nh) = -I,
since P(7l) > O. Let Ci. ~ i ~ n. Then at 7, we have two possibilities. If
i E .AI, then i ¢: fJj'J. Thus, by Lemma 7, sgn q;(7",) = -sgn ql(7i) for all j E fJj'J.

Therefore, 0 #- sgn P(7i) = -sgn N(7,) = -sgn qlh). On the other hand,
if i if'.AI, then again by Lemma 7, sgn q;(7i) == -sgn ql(7,) for all j E.AI.
Thus sgn N(7,) = sgn qlh) for every value oU in {2, ... , n}.

By Lemma 6 and its corollary, ql has exactly one root on the interval
(7, , 7,+1) for 2 ~ i ~ n - 1, for a total of n - 2 roots, its full complement.
By the convention assumed before Lemma 7, we see that ql(7l) > 0, while
sgn ql(7,) = (-I)i for 2 ~ i ~ n. Above, we have seen that sgn N(71) =
-sgn ql(7l) = --I, while sgn N(7i) = sgn ql(7"i) for 2 ~ i ~:;; n. Therefore,
for 1 ~ i ~ n, sgn N(7i) = (--1 )i, obliging N(7,) to have a root in each
interval (7i , 7"i+1) for I ~ i ~ n - I, a total of n - 1 roots. Since the degree
of N is not more than n - 2, this is an absurdity which proves that all the
cx's are zero. I

As previously stated, the proof of Lemma 8 completes the proof of
Theorem 1.

LEMMA 9. There is no nontrivial linear combination ofql ,... , qn-2 which has
roots tl , t2 ,... , tn- 2 , such that 71 < tl < 72 < t2 < ... < 7n-2 < tn- 2 < 7n-l .

Proof Assume that such a nontrivial combination Q == CXlql + ... +
cxnqn exists, with CXl ::?: 0 and Ci. n - l = CXn = O. Then each root ti has multi
plicity one, and the expression alternates sign at 71 , 72 , ... , 7"-1' We define
exactly as in Lemma 8 the sets ,/1/ and ,OJ> and the polynomials Nand P, such
that Q = N + P. Since we have assumed Ci.l ~ 0, we must in this case check
two possibilities: Qh) < 0 and Q(7l) > O.

If Qh) < 0, then Nh) < 0, and for 1 ~ i ~ n -- 1 we have sgn Q(7i) =

(_1)i. We show that sgn N(7,) = (-I)i for 2 ~ i ~ n, leading to the same
contradiction as in the previous lemma.

If i if'.AI, then by Lemma 7, sgn ql7i) = -sgn ql(7i) for allj E '/1/. There
fore sgn Ci.jqj(7i) = sgn qi7i) for all j E.AI, and sgn N(7i) == sgn Ql(7,} =
( --1 )i. We remark in particular that n - I ¢: A" and n ¢:.AI, since CXn- l =
CXn = 0 from the outset.
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If i E vi', then if/: PfJ, and again by Lemma 7, sgn CXjqiTi) = ~sgn ql(Ti)
- (-I)i c= -sgn Q(T i ), for all j E 2J. Therefore, since P has sign opposite to
Q or is equal zero if ;YJ! = , and since Q= N P, it is necessary that N
and Q agree in sign, and sgn N(Ti) == sgn Q(T;) = (~ I)i. Thus for all i.

I n, sgn N(T,)=- (-I)', and N has 11 - I roots, while its degree is not
more than 11- 2. Therefore, the possibility that Q actually exists and Q(T])
ois not viable.

The other possibility is that Q(Tl) O. In that case, we necessarily have
P(T1) > 0, for, if not, P(T1) O. whence P is the zero polynomial, and
Q= N. This cannot occur, since sgn Q(T;)= (_I)H for lin I.
and (because n-- I, n rF .Ai") sgn N( T n-l)~= -- sgn N(T ,,).

If 2 i n, then either i rF'YJ! or i E :YJ!. If i rF;J!J. then by Lemma 7. sgn
P(Ti) --sgnql{T,). We note that n·- l,nrF:YJ!. If iE:YJ!, then irjcA'. Thus
sgn N(T,) ~ sgn ql(Ti ) = - sgn Q(T,), unless perhaps vY is empty and
N = O. Therefore, since Q NL P, and since Nand Q disagree in sign, it
is necessary that P agree in sign with Q and sgn P(T,) == sgn Q(T;) ==-sgn
Ql(Ti)' Combining the cases, we see that sgn peT,) - (-If 1 for lin.
resulting in n - I roots for P. which is again a contradiction. Thus, the
inequality Q(Tl) > 0 is also not viable. Our result is therefore implied by
exhaustion of all other possibilities. I

LEMMA 10 (de Boor and Pinkus [29]). Let J" denote the expression

for k 11.

Then at any nodal configuration we have (~I)" (Jk!J1 ) < 0 for each k 2
and moreover 8AJ!8A k < 0 for k 2. Symmetrically, 8AnlcA" < 0 for
k n -- I.

Proof (included for the sake of completeness). These facts follow for all
configurations of nodes if they can be shown for a particular configuration of
nodes, in view of the fact that J 1 , , I n do not vanish. To prove the results
for a particular configuration (t l , , tn-I) observe that since Jit1 , .... t,,_I)/O.
we can find a continuously differentiable function G on some open neigh
borhood V of the point (A,(t1 , ... , tn-l))~=2 and an open neighborhood U of
(tl ,... , tn-I) such that A1(Sl ,... , Sn-l) = G(A2(Sl ,.... Sn-l)' .. ·• An(Sl .... , Sn-l) for
all (Sl ,... , '\"n-l) E U. Also. by Cramer's rule,

81..1 = I (-1)" (J"IJI) 01.." ,
1.'='2.

and therefore

2G CAl
dX~ (;;\~-

for 2:'( k :'( n.
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If now for some k, 2 ~ k .-s;; n, (-I YJk/JI > 0, then we could find (SI,""
Sn-I) EO U such that A,(SI , , Sn-I) = A;(ti , ... , tn-I) for 2:e;: i ~ n, i eft k,
while A;(5I ,... , Sn-I) < A;(ti , , tn-I) for both it'c I and i 0= k. Hence, if
(t1 , ... , tn-I) were optimal, (SI ,... , Sn-I) would also be optimal, contradicting
Theorem 1. This proves our results for (h ,... , t ,,-1) and thus for all other
nodal configurations as well. I

From Lemmas 9 and 10, Theorems 2 and 3 follow.

Historical Notes

Since this paper has presented a solution of Bernstein's conjecture already
mentioned, it should be appropriate to record something of the history of the
problem. Lagrange interpolation is, of course, a very old procedure for
approximation, and, when the question arose of estimating the error in such
procedures, it has been for some time naively assumed that if the points of
interpolation "fill up" the interval upon which interpolation is taking place,
the results get "better and better." This was disproved by examples by
Meray and Runge around the turn of the century.

In fact, quite the opposite is the case, when one interpolates arbitrary
continuous functions on a given interval. Bernstein [23] in 1914 suspected
after investigating equally spaced nodes that the minimal norm for inter
polation grows logarithmically with the degree of the polynomials used.
Faber [24] in 1914 also showed that, given any array of nodes (tci° l , .... t;,n)}~~1 ,
there must exist a function ffor which r..;~of(tjn,) yj1l1 fails to converge to f
Further investigations into such matters were carried on by Hahn [25].

As a consequence of such results, the problem of finding or characterizing
nodes which would minimize the norm of the interpolation operator began to
arouse interest. Useful results in this area have been hitherto scarce. save
for results giving asymptotic bounds on the projection constant Cn • The
works of Bernstein[5], Erdos [26], Ehlich and Zeller [13], Luttman and
Rivlin [7], and others have shown that a constant c exists, such that

2/JI log n - c ~ Cn ,,:;: 2/JI log n + c, for all n.

Interpolation on the zeros of the Tchebycheff polynomial of degree n produces
results which are asymptotically optimal. However, Luttman and Rivlin in
[7] have found better points of interpolation for n ~ 40. Erdos in [8] has
added to Bernstein's conjecture by conjecturing that. for all nodal configura
tions, if for some i, Ai < Cn, then a j exists such that Aj C n • This con
jecture could be affirmatively settled by modifications of the proofs con
tained here, but it has in fact been resolved by de Boor and Pinkus in [29].
One consequence of Erdos' conjecture is exact information about the quality
of interpolation on a given set of nodes through the difference between the
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greatest and the least of the local maxima of the Lebesgue function. Measured
in this manner, interpolation on the Tchebycheff nodes is indeed very good
and improves as n grows.

It is of interest to mention that no elegant general method, whether a
formula or a special algorithm, has yet been discovered which serves to
compute the nodes yielding Ai ce. A2 = .,. cc An. However, as a direct
consequence of the closure ofIln under affine transformations of the variable
t, and of Theorem 3, the desired nodes must be symmetric about the midpoint
of the interval [a, b].

The first reference to the problem solved here is the article [5] of Bernstein.
1n the same work, Bernstein noted that C2 =~. This last result, and ana
logous computations for n 3, also appear in Tureckii [I] and in Neuman
[14]. The conjecture of Bernstein is mentioned again in Erdos [8], along with
the refinement already mentioned. On the assumption that Bernstein's
conjecture was true, Hayes and Powell [2] computed the optimal nodes for
n IS. The present contributor began his work on the problem as a disser
tation topic [27]. The problem was not solved in the dissertation, although
many of the techniques used in the solution were developed. The main
achievement of the dissertation was a proof, by application of fixed point
theory, that a nodal configuration exists which equalizes the local maxima of
the Lebesgue function for interpolation into any Haar subspace of qa, b]
which contains the constant functions. Most of these have appeared in the
article [28] of Kilgore and Cheney. The present paper and that of de Boor and
Pinkus [29] were independently conceived as natural extensions of my note
[30]. Their paper draws upon their greater experience to simplify the proofs
of [30], given here in full, and provides a noninductive proof of Theorem 3
and the conjecture of Erdos. In addition, their paper extends the methods
developed here to study the question whether the equally spaced nodes
optimize interpolation of 2Il-periodic functions by means of trigonometric
polynomials. The intersection between the two articles, aside from Theorem I
and its proof, lies in Lemma 10, for which I must remain indebted.

The fact that (to , ... , tTl) --~ (A] ,... , An) is a differentiable function has, as
far as I know, never been recorded as a theorem. Related results, such as
the differentiability of (to .... , t n ) f-+ (A 1 - A2 , ... , A1H - An), which was
demonstrated in an early version of [28], have been known for some time.
The formula oA;/ot j

cc ~Y;(T;) X;(t j ) has its ancestry in the excellent paper
[16] of Morris and Cheney, where the expression on the right occurs in the
more general setting of interpolation into an arbitrary differentiable Haar
subspace and is not called a partial derivative. The question of exactly to
what class of subspaces the methods of this paper can be applied remains
very much open. Many of the tools used here are available in a wide variety
of situations, as [27] and [28] have already demonstrated.

Several references appearing in the bibliography have not been cited here.
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They have handled apparently related unsolved problems or have formulated
the problem under discussion here in other ways which might possibly lead
to another method of solution.
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